d02 - Ordinary Differential Equations d02gac

nag_ode_bvp_fd nonlin fixedbc (d02gac)

1. Purpose

nag_ode_bvp_fd_nonlin fixedbc (d02gac) solves the two-point boundary-value problem with assigned
boundary values for a system of ordinary differential equations, using a deferred correction technique
and a Newton iteration.

2. Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd_nonlin_fixedbc(Integer neq,
void (*fcn) (Integer neq, double x, double y[], double f[],
Nag_User *comm),
double a, double b, double u[], Integer vI[],
Integer mnp, Integer *np, double x[], double y[],
double tol, Nag_User *comm, NagError *fail)

3. Description

This function solves a two-point boundary-value problem for a system of neq differential equations
in the interval [a, b]. The system is written in the form

ny:fi(xvylvaﬂ"'vyneq)’ t=1,2,...,neq (1)

and the derivatives are evaluated by a function fcn supplied by the user. Initially, neq boundary
values of the variables y;, must be specified (assigned), some at a and some at b. The user also
supplies estimates of the remaining neq boundary values and all the boundary values are used in
constructing an initial approximation to the solution. This approximate solution is corrected by
a finite-difference technique with deferred correction allied with a Newton iteration to solve the
finite-difference equations. The technique used is described fully in Pereyra(1979). The Newton

af;

iteration requires a Jacobian matrix E)

and this is calculated by numerical differentiation using

an algorithm described in Curtis et al ({974).

The user supplies an absolute error tolerance and may also supply an initial mesh for the
construction of the finite-difference equations (alternatively a default mesh is used). The algorithm
constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen
so that the error is everywhere less than the user’s tolerance and so that the error is approximately
equidistributed on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh.
If on the other hand the solution is required at several specific points then the user should use the
interpolation routines provided in Chapter E01 if these points do not themselves form a convenient
mesh.

4. Parameters

neq
Input: the number of equations.
Constraint: neq > 2.

fen
The function fen must evaluate the functions f; (i.e., the derivatives y.) at the general point
x.
The specification of fen is:

[NP3275/5/pdf] 3.d02gac. 1

nag_ode_bvp_fd _nonlin_fixedbc NAG C Library Manual

void fcn(Integer neq, double x, double y[], double f[], Nag_User *comm)

neq
Input: the number of differential equations.
X
Input: the value of the argument .
y[neq]
Input: y[i — 1] holds the value of the argument y,, for i = 1,2, ... neq.
flneq]
Output: f[¢i — 1] must contain the values of f;, for i =1,2,... neq.
comm
Input/Output: pointer to a structure of type Nag User with the following
member:
p - Pointer

Input/Output: The pointer comm->p should be cast to the required type,
e.g. struct user *s = (struct user *)comm->p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

Input: the left-hand boundary point, a.

Input: the right-hand boundary point, b.
Constraint: b > a.

u[neq][2]

Input: u[i — 1][0] must be set to the known (assigned) or estimated values of y; at a and
ufi — 1][1] must be set to the known or estimated values of y, at b, for i = 1,2,... neq.

v[neq][2]

mnp

Input: v[i —1][j — 1] must be set to 0 if u[i — 1][j — 1] is a known (assigned) value and to 1 if
u[i — 1][j — 1] is an estimated value, i = 1,2,... neq; j = 1,2.

Constraint: precisely neq of the v[i — 1][j — 1] must be set to 0 i.e., precisely neq of u[i — 1][0]
and u[i — 1][1] must be known values and these must not be all at a or b.

Input: the maximum permitted number of mesh points.
Constraint: mnp > 32.

np
Input: determines whether a default or user-supplied initial mesh is used. If np = 0, then np
is set to a default value of 4 and a corresponding equispaced mesh x[0],x[1],...,x[np — 1] is
used. If np > 4, then the user must define an initial mesh using the array x as described.
Constraint: np = 0 or 4 < np < mnp.
Output: the number of points in the final (returned) mesh.
X[mnp]
Input: if np > 4 (see np above), the first np elements must define an initial mesh. Otherwise
the elements of x need not be set.
Constraint:
a=x[0] <x[1]<...<xnp-—1]=bfornp >4 (2)
Output: x[0],x[1],...,x[np-1] define the final mesh (with the returned value of np) satisfying
the relation (2).
y[neq][mnp]
Output: the approximate solution z;(z;) satisfying (3), on the final mesh, that is
yli =1 -1 =2(x;,),i=1,2,...,np;j = 1,2,...,neq,
where np is the number of points in the final mesh.
The remaining columns of y are not used.
3.d02gac.2 [NP3275/5/pdf]

d02 - Ordinary Differential Equations d02gac

tol
Input: a positive absolute error tolerance. If
a=2; <Ty<...<Tpy,=b
is the final mesh, zj(aci) is the jth component of the approximate solution at z;, and Y; (x;)
is the jth component of the true solution of equation (1) (see Section 3) and the boundary
conditions, then, except in extreme cases, it is expected that
|z](acz) — yj(x2)| <tol,i=1,2,...,np;j =1,2,...,neq (3)
Constraint: tol > 0.0.
comm
Input/Output: pointer to a structure of type Nag User with the following member:
p - Pointer
Input/Output: The pointer p, of type Pointer, allows the user to communicate
information to and from the user-defined function fen(). An object of the required type
should be declared by the user, e.g. a structure, and its address assigned to the pointer
p by means of a cast to Pointer in the calling program, e.g. comm.p = (Pointer)&s.
The type pointer will be void * with a C compiler that defines void * and char *
otherwise.
fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_INT_ARG_LT
On entry, neq must not be less than 2: neq = (value).
On entry, mnp must not be less than 32: mnp = (value).

NE_REAL_ARG_LE
On entry, tol must not be less than or equal to 0.0: tol = (value).

NE_2_ REAL_ARG_LE
On entry b = (value) while a = (value). These parameters must satisfy b > a.

NE_INT RANGE_CONS_2

On entry np = (value) and mnp = (value). The parameter np must satisfy either
4 < np < mnp or np = 0.
NE_LF_B_VAL

The number of known left boundary values must be less than the number of equations: The
number of known left boundary values = (value): The number of equations = (value).

NE_RT B_VAL
The number of known right boundary values must be less than the number of equations: The
number of known right boundary values = (value): The number of equations = (value).

NE_LFRT B_VAL
The sum of known left and right boundary values must equal the number of equations: The
number of known left boundary values = (value): The number of known right boundary
values = (value): The number of equations = (value).

NE_LF_B_MESH
On entry, the left boundary value a, has not been set to x[0]: a = (value), x[0] = (value).

NE_RT_B_MESH
On entry, the right boundary value b, has not been set to x np—1]: b = (value), x[np—1] =
(value).

NE_NOT_STRICTLY _INCREASING
The sequence x is not strictly increasing: x[(value)] = (value), x[(value)] = (value)

[NP3275/5/pdf] 3.d02gac.3

nag_ode_bvp_fd _nonlin_fixedbc NAG C Library Manual

6.1.

6.2.

NE_ALLOC_FAIL
Memory allocation failed.

NE_CONV_MESH
A finer mesh is required for the accuracy requested; that is mnp is not large enough.

NE_CONV_MESH_INIT
The Newton iteration failed to converge on the initial mesh. This may be due to the initial
mesh having too few points or the initial approximate solution being too inaccurate. Try
using nag-ode_bvp_fd_nonlin_gen (d02rac).

NE_CONV_ROUNDOFF
Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

Further Comments

The time taken by the function depends on the difficulty of the problem, the number of mesh points
used (and the number of different meshes used), the number of Newton iterations and the number
of deferred corrections.

A common cause of convergence problems in the Newton iteration is the user specifying too few
points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is
unable to do so until the solution on the initial mesh has been calculated in the Newton iteration.
If the known and estimated boundary values are set to zero, the routine constructs a zero initial
approximation and in many cases the Jacobian is singular when evaluated for this approximation,
leading to the breakdown of the Newton iteration.

The user may be unable to provide a sufficiently good choice of initial mesh and estimated boundary
values, and hence the Newton iteration may never converge. In this case the continuation facility
provided in nag-ode_bvp_fd_nonlin_gen (d02rac) is recommended.

In the case where the user wishes to solve a sequence of similar problems, the final mesh from
solving one case is strongly recommended as the initial mesh for the next.

Accuracy

The solution returned by the routine will be accurate to the user’s tolerance as defined by the relation
(3) except in extreme circumstances. If too many points are specified in the initial mesh, the solution
may be more accurate than requested and the error may not be approximately equidistributed.

References

Curtis A R, Powell M J D and Reid J K (1974) On the Estimation of Sparse Jacobian Matrices.
J. Inst. Maths. Applics. 13 117-119.

Pereyra V (1979) PASVA3: An Adaptive Finite-Difference Fortran Program for First Order
Nonlinear, Ordinary Boundary Problems. In: ‘Codes for Boundary Value Problems in Ordinary
Differential Equations.” Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel,
E Denman and P Nelson) 76 Springer-Verlag.

See Also

nag-ode_bvp_fd_lin_gen (d02ghc)
nag-ode_bvp_fd_nonlin_gen (d02rac)

3.d02gac.4 [NP3275/5/pdf]

d02 - Ordinary Differential Equations d02gac

8.1.

Example

We solve the differential equation

y" = —yy" - B(L—y")

with boundary conditions

y(0)=y'(0)=0, ' (10)=1

for 8 = 0.0 and 8 = 0.2 to an accuracy specified by tol = 1.0e—3. We solve first the simpler problem
with 8 = 0.0 using an equispaced mesh of 26 points and then we solve the problem with 5 = 0.2
using the final mesh from the first problem.

Program Text

/* nag_ode_bvp_fd_nonlin_fixedbc(d02gac) Example Program
Copyright 1994 Numerical Algorithms Group.

Mark 3, 1994.

* X ¥ X ¥

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef NAG_PROTO

static void fcn(Integer neq, double x, double y[], double f[],
Nag_User *comm) ;

#else

static void fcn();

#endif

#define NEQ 3
#define MNP 40

main()

{
double a, b;
Integer i, j, k;
double u[NEQ] [2], x[MNP], y[NEQ] [MNP];
Integer v[NEQ][2];
Integer np;
double tol;
static NagError fail;
Integer neq, mnp;
double beta;
Nag_User comm;

Vprintf ("d02gac Example Program Results\n");

/* For communication with function fcn()
* assign address of beta to comm.p.

*/
comm.p = (Pointer)β
neq = NEQ;
mnp = MNP;
tol = 0.001;
np = 26;
a = 0.0;
b = 10.0;
beta = 0.0;

for (j=0; j<2; ++j)
{

uli] [j] = 0.0;

[NP3275/5/pdf] 3.d02gac.5

nag_ode_bvp_fd _nonlin_fixedbc

8.2.

8.3.

v[il[j] = 0;

v[2] [0]
v[0] [1]
v[2][1]
ul1] [1]
ul[0] [1]
x[0] ;
for (i=2; i<=np-1; ++i)

x[i-1] = ((double) (np-i)*a + (double) (i-1)*b)/

(double) (np-1);

x[np-1] = b;
for (k=1; k<=2; ++k)
{

Vprintf ("\nProblem with beta = %7.4f\n", beta);
d02gac(neq, fcn, a, b, (double *)u, (Integer *)v, mnp,
&np, (double *)x, (double *)y, tol, &comm, &fail)

NAG C Library Manual

if (fail.code == NE_NOERROR || fail.code == NE_CONV_ROUNDOFF)

{

Vprintf ("\nSolution on final mesh of %1ld points\n",

np);

Vprintf (" X Y(1) Y(2) Y(3)\n");

for (i=0; i<=np-1; ++i)
{
Vprintf (" %9.4f ", x[i]);
for (j=0; j<neq; ++j)

Vprintf (" %9.4f ", y[jl1[il);
Vprintf ("\n");
}
beta += 0.2;
}
}
exit (EXIT_SUCCESS);

3

#ifdef NAG_PROTO
static void fcn(Integer neq, double x, double y[], double f[]
#else

static void fcn(neq, x, y, f, comm)

Integer neq;

double x;

double y[1, f[];

Nag_User *comm;

#endif
{

double *beta = (double *)comm->p;

0] = yl[1i];

fl1] = yl2];

£[2] = -y[0] * y[2] - *beta * (1.0-y[1]l*y[1]1);
}

Program Data
None.

Program Results

dO02gac Example Program Results
Problem with beta = 0.0000

Solution on final mesh of 26 points

X Y(1) Y(2) Y(3)
0.0000 0.0000 0.0000 0.4695
0.4000 0.0375 0.1876 0.4673
0.8000 0.1497 0.3719 0.4511
1.2000 0.3336 0.5450 0.4104
1.6000 0.5828 0.6963 0.3424

3.d02gac.6

, Nag_User *comm)

[NP3275/5/pdf]

d02 — Ordinary Differential Equations

.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000

QUOWWOWOWOONNOOOOOGTTOPPBPWWNDNN

[ErY

O NNNOOO OO PWWWNNRFR, P~ O

. 8864
.2309
.6026
.9900
.3851
.7834
.1829
.5828
.9828
.3828
.7828
.1828
.5828
.9828
.3828
.7828
.1828
.5828
.9828
.3828
.7828

Problem with beta =

Solution on final mesh of 26 points

X
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000
.4000
.8000
.2000
.6000
.0000

QUOWWOWOWOVARONNOOOOOOTNPRPPWWNNNRL,EP,OOO

[ErY

OCOONNNOOODTOOPRPWWWNNRP,P,PPLPOOOOO

Y(1)

.0000
.0628
.2020
.4324
. 7268
.0670
.4368
.8233
.2180
.6162
.0157
.4156
.8155
.2155
.6155
.0155
.4155
.8155
.2155
.6155
.0155
.4155
.8155
.2155
.6155
.0155

0.2000

PRPRRPRPRRPRRPRPPRPRPPRPPRPOOOOOOOO

PRPRRPRPRPRPRRPRPPRPPRPPRPPOODODOOOOOOOOO0O

.8163
.9009
.95629
.9805
.9930
.9978
.9994
.9999
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Y(2)

.0000
.2584
.4814
.6636
.8007
.8939
.9498
L9791
.9924
.9976
.9993
.9998
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.2558
.1678
.09563
.0464
.0193
.0069
.0021
.0006
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

[eNeoNoNoNoNoNoNoNoRoNoNoRoNoloNoNoNoNoNoNe)

Y(3)
.6865
.6040
.5091
.4001
.2860
.1821
.1017
.0492
.0206
.0074
.0023
.0006
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

[eNeoNoNoNoNoNoNoloNoNoNoloNoNoNoNoNoNoNoNoNoNoRoNoNal

d02gac

[NP3275/5/pdf]

3.d02gac.7

